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Quality Attributes 

Abstract: Computer systems are used in many critical applications where a 
failure can have serious consequences (loss of lives or property). Developing 
systematic ways to relate the software quality attributes of a system to the 
system's architecture provides a sound basis for making objective decisions 
about design trade-offs and enables engineers to make reasonably accurate 
predictions about a system's attributes that are free from bias and hidden 
assumptions. The ultimate goal is the ability to quantitatively evaluate and 
trade off multiple software quality attributes to arrive at a better overall system. 
The purpose of this report is to take a small step in the direction of developing 
a unifying approach for reasoning about multiple software quality attributes. In 
this report, we define software quality, introduce a generic taxonomy of 
attributes, discuss the connections between the attributes, and discuss future 
work leading to an attribute-based methodology for evaluating software 
architectures. 

1       Introduction 

Computer systems are used in many critical applications where a failure can have serious con- 
sequences (loss of lives or property). Critical applications have the following characteristics: 

• The applications have long life cycles (decades rather than years) and 
require evolutionary upgrades. 

• The applications require continuous or nearly non-stop operation. 

• The applications require interaction with hardware devices. 

• The applications assign paramount importance to quality attributes such as 
timeliness, reliability, safety, interoperability, etc. 

Developing systematic ways to relate the software quality attributes of a system to the sys- 
tem's architecture provides a sound basis for making objective decisions about design trade- 
offs and enables engineers to make reasonably accurate predictions about a system's at- 
tributes that are free from bias and hidden assumptions. The ultimate goal is the ability to 
quantitatively evaluate and trade off multiple software quality attributes to arrive at a better 
overall system. 

The purpose of this report is to take a small step in the direction of developing a unifying ap- 
proach for reasoning about multiple software quality attributes. This report examines the fol- 
lowing four software quality attributes: performance, dependability, security, and safety. Each 
attribute has matured (or is maturing) within its own community, each with their own vernacular 
and point of view. We propose a generic taxonomy for describing each attribute and attempt 
to use this taxonomy to 

• describe how each community thinks about its respective attribute 

• highlight some of the important methods used by each community 
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• draw out the connections between the attributes 

• suggest a direction for developing an attribute-based methodology for 
evaluating software architectures. 

Section 2 defines software quality and introduces the generic taxonomy. The four sections that 
follow cover each of the four attributes: 

• Section 3 Performance 

• Section 4 Dependability 

• Section 5 Security 

• Section 6 Safety 

In these sections the following conventions are used in the text: 

• bold - indicates that a term is defined in the glossary starting on page 47. 

• italics - indicates that a term is shown in the figure illustrating the taxonomy. 

• bold italics - indicates that a term is both shown in the figure illustrating the 
taxonomy and defined in the glossary. 

Section 7 discusses the connections between the four attributes by highlighting the relation- 
ships between attributes and their approaches and makes several recommendations. 

Section 8 discusses future work leading to an attribute-based methodology for evaluating soft- 
ware architectures. 
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2      Software Quality Attributes 

Developers of critical systems are responsible for identifying the requirements of the applica- 
tion, developing software that implements the requirements, and for allocating appropriate re- 
sources (processors and communication networks). It is not enough to merely satisfy 
functional requirements. Critical systems in general must satisfy security, safety, dependabil- 
ity, performance, and other, similar requirements as well. 

Software quality is the degree to which software possesses a desired combination of at- 
tributes (e.g., reliability, interoperability) [IEEE 1061]. 

2.1   How Various Communities Have Addressed Quality Attributes 

There are different schools/opinions/traditions concerning the properties of critical systems 
and the best methods to develop them: 

• performance — from the tradition of hard real-time systems and capacity 
planning 

• dependability — from the tradition of ultra-reliable, fault-tolerant systems 

• security — from the traditions of the government, banking and academic 
communities 

• safety — from the tradition of hazard analysis and system safety engineering 

Systems often fail to meet user needs (i.e., lack quality) when designers narrowly focus on 
meeting some requirements without considering the impact on other requirements or by tak- 
ing them into account too late in the development process. For example, it might not be pos- 
sible to meet dependability and performance requirements simultaneously: 

• Replicating communication and computation to achieve dependability might 
conflict with performance requirements (e.g., not enough time). 

• Co-locating critical processes to achieve performance might conflict with 
dependability requirements (e.g., single point of failure). 

This is not a new problem and software developers have been trying to deal with it for a long 
time, as illustrated by Boehm: 

Finally, we concluded that calculating and understanding the value of a single 
overall metric for software quality may be more trouble than it is worth. The 
major problem is that many of the individual characteristics of quality are in 
conflict; added efficiency is often purchased at the price of portability, 
accuracy, understandability, and maintainability; added accuracy often 
conflicts with portability via dependence on word size; conciseness and 
conflict with legibility. Users generally find it difficult to quantify their 
preferences in such conflict situations [Boehm 78]. 
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2.2   Software Quality Attribute Trade-offs 

Designers need to analyze trade-offs between multiple conflicting attributes to satisfy user 
requirements. The ultimate goal is the ability to quantitatively evaluate and trade off multiple 
quality attributes to arrive at a better overall system. We should not look for a single, univer- 
sal metric, but rather for quantification of individual attributes and for trade-off between these 
different metrics, starting with a description of the software architecture. 

Performance 
O Local (single attribute) optimum 

# Global (multiple attribute) optimum 

Security 

Dependability 

Figure 2-1: Software Quality Attribute Trade-offs 

2.3   Generic Taxonomy for Quality Attributes 

Attributes will be thought of as properties of the service delivered by the system to its users. 
The service delivered by a system is its behavior as it is perceived by its user(s); a user is 
another system (physical or human which interacts with the former [Laprie 92]). We think of 
the service as being initiated by some event, which is a stimulus to the system signaling the 
need for the service. The stimulus can originate either within the system or external to the 
system. 

For each quality attribute (performance, dependability, security and safety) we use a taxon- 
omy (see Figure 2-1) that identifies: 

Concerns — the parameters by which the attributes of a system are judged, specified and 
measured. Requirements are expressed in terms of concerns. 

Attribute-specific factors —properties of the system (such as policies and mechanisms 
built into the system) and its environment that have an impact on the concerns. Depending 
on the attribute, the attribute-specific factors are internal or external properties affecting the 
concerns. Factors might not be independent and might have cause/effect relationships. Fac- 
tors and their relationships would be included in the system's architecture: 
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• Performance factors — the aspects of the system that contribute to 
performance. These include the demands from the environment and the 
system responses to these demands. 

• Dependability impairments — the aspects of the system that contribute to 
dependability. There is a causal chain between faults inside the system and 
failures observed in the environment. Faults cause errors; an error is a 
system state that might lead to failure if not corrected. 

• Security factors — the aspects of the system that contribute to security. 
These include system/environment interface features and internal features 
such as kernelization. 

• Safety factors — the aspects of the system that contribute to safety. 
Hazards are conditions or system states that can lead to a mishap or 
accident. Mishaps are unplanned events with undesirable consequences. 

Methods — how we address the concerns: analysis and synthesis processes during the 
development of the system, and procedures and training for users and operators. Methods 
can be for analysis and/or synthesis, procedures and/or training, or procedures used at 
development or execution time. 

Attributes 

Concerns 

Attribute- 
specific 
factors 

Methods 

Internal/External 
Cause/Effect 

Analysis/Synthesis 
Procedures/Training 
Development/Execution 

Figure 2-2: Generic Taxonomy for Quality Attributes 
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3      Performance 

3.1   Overview 

3.1.1    Definition 

3.1.1.1 IEEE 610.12 Definition 

"Performance" has many connotations. The definition given in the IEEE Standard Glossary of 
Software Engineering Terminology [IEEE-610.12] is: "Performance. The degree to which a 
system or component accomplishes its designated functions within given constraints, such as 
speed, accuracy, or memory usage." This definition is too broad for our purposes. 

3.1.1.2 Smith's Definition 

Performance as a software quality attribute refers to the timeliness aspects of how software 
systems behave. We adopt a slight generalization of Smith's definition of performance: "Per- 
formance refers to responsiveness: either the time required to respond to specific events or 
the number of events processed in a given interval of time" [Smith 93, p. 720]. Performance is 
that attribute of a computer system that characterizes the timeliness of the service delivered 
by the system. 

3.1.1.3 Performance vs. Speed 

A misconception about performance is that it equates to speed—that is, the notion that poor 
performance can be salvaged simply by using more powerful processors or communication 
links with higher bandwidth. Faster might be better, but for many systems faster is not suffi- 
cient to achieve timeliness. This is particularly true of real-time systems. As noted by Stank- 
ovic [Stankovic 88], the objective of "fast computing" would be to minimize the average 
response time for some group of services, whereas the objective of real-time computing is to 
meet individual timing requirements of each service. Moreover, hardware mechanisms such 
as caching, pipelining and multithreading, which can reduce average response time, can 
make worst-case response times unpredictable. 

"Predictability, not speed, is the foremost goal in real-time-system design" [Stankovic 88]. in 
general, performance engineering is concerned with predictable performance—whether it is 
worst-case or average-case performance. Execution speed is only one factor. 

3.1.2   Taxonomy 

3.1.2.1   Abstract Performance Model 

The performance of a system stems from the nature of the resources used to fulfill demands 
and how shared resources are allocated when the multiple demands must be carried out on 
the same resources. This type of problem is known as a scheduling problem and has been 
studied for years. See, for example, Conway [Conway 67]. 
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Conway [Conway 67, p. 6] says a scheduling problem can described by four types of informa- 
tion: 

1. jobs and operations to be processed 

2. number and types of machines 

3. disciplines that restrict the manner in which assignments can be made 

4. the criteria by which the schedule will be evaluated 

From a modeling point of view, Smith [Smith 93, p. 723] describes five types of data needed 
for constructing and evaluating software performance engineering models: 

• Performance requirements - quantitative requirements defined in terms of 
events of interest and timing constraints for responding to each event. 

• Behavior patterns and intensity - the number of event streams1 and the 
worst-case and steady-state arrival rates for each event stream 

• Software descriptions - the software operations executed in response to 
events. 

• Execution environment - the hardware devices and software services 
needed to carry out the aforementioned software operations. 

• Resource usage estimates - resource requirements for carrying software 
operations such as processor execution time, I/O demands or memory 
requirements. 

The points of view of Conway and Smith differ somewhat; nevertheless, both points of view 
call out 

• performance concerns, such as criteria for evaluating the schedule, and 
timing constraints for responding to events 

• performance factors, such as 

• behavior patterns and intensity, resource usage, software descriptions, 
and jobs and operations, which characterize system demand 

•execution environment and numbers and types of machines, which 
characterize the system 

• methods for synthesis and analysis that draw upon queuing theory, 
scheduling theory, and formal methods that are used to understand'the 
relationship between the factors and the concerns. 

This is reflected in the taxonomy shown in Figure 3-1. 

An event stream is a sequence of events from the same source- for example, a sequence of interrupts from 
a given sensor. 
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Performance 
engineering 

Concerns 

Latency 

Throughput 

Factors 

Methods -r 

Capacity 

Modes 

Demand 

System 

Synthesis 

Analysis 

-E 

-E 

Response window 

Precedence 

Jitter 

Criticality 

Observation interval 

Processing rate 

Criticality 

Utilization 

Schedulable utilization 

Spare capacity 

-E 
Arrival pattern 

Execution time 
Type of resource 

Software services 

Resource allocation 

-E 
Scheduling theory 

Queuing theory 

Formal methods 

Figure 3-1: Performance Taxonomy 

3.2   Concerns 

The performance concerns (or requirements) used to specify and assess the performance of 
the system are 

• latency - How long does it take to respond to a specific event? 

• throughput- How many events can be responded to over a given interval of 
time? 
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• capacity- How much demand can be placed on the system while continuing 
to meet latency and throughput requirements? 

• modes - How can the demand and resources change over time? What 
happens when system capacity is exceeded and not all events can be 
responded to in a timely manner? 

3.2.1 Latency 

Latency refers to a time interval during which the response to an event must be executed. 
The time interval defines a response window given by a starting time (minimum latency) and 
an ending time (maximum latency). These can either be specified as absolute times (time of 
day, for example) or offsets from an event which occurred at some specified time. The ending 
time is also known as a deadline. Latency sub-concerns include: precedence (a specification 
for a partial or total ordering of event responses), jitter (the variation in the time a computed 
result is output to the external environment from cycle to cycle), and criticality (the importance 
of the function to the system). 

3.2.2 Throughput 

Throughput refers to the number of event responses that have been completed over a given 
observation interval [Lazowska 84, p. 41]. This definition suggests that it is not sufficient to 
just specify a processing rate, but that one or more observation intervals should also be 
specified. For example, a system that can process 120 transactions every hour might not guar- 
antee that 2 transactions will be processed every minute. Perhaps no transactions are pro- 
cessed during the first 30 minutes and all of the transactions are processed during the 
remaining 30 minutes. 

Criticality is also a sub-concern of throughput. 

3.2.3 Capacity 

Capacity is a measure of the amount of work a system can perform. Capacity is usually de- 
fined in terms of throughput, and has several possible meanings [Jain 91, p. 39]: 

The maximum achievable throughput under ideal workload conditions. That 
is, the maximum number of events per unit time that can be achieved if you 
could pick the theoretically ideal set of events. For networks this is called 
bandwidth, which is usually expressed in megabits per second. 

However, often there is also a response time requirement that accompanies the throughput 
requirement (as mentioned above). Therefore, a more practical definition is the following: 

The maximum achievable throughput without violating specified latency 
requirements. Jain refers to as usable capacity [Jain 91]. 

For real-time systems, throughput is not as important as predictably meeting latency require- 
ments. While we can still consider looking at the maximum achievable throughput while con- 
tinuing to meet all hard deadlines, another useful metric is schedulable utilization. 

10 
CMU/SEI-95-TR-021 



Utilization is the percentage of time a resource is busy. Schedulable utilization, then, is the 
maximum utilization achievable by a system while still meeting timing requirements. Sha 
[Sha 90] refers to this as schedulability, one of the fundamental measures of merit for real-time 
systems. 

Since capacity is a measure of the amount of work a system can perform, spare capacity, 
then, is then a measure of the unused capacity. 

3.2.4    Modes 

It is not uncommon for systems to have different sets of requirements for different phases of 
execution. For example, an avionics system could have different requirements for the take-off 
phase than for the cruising phase. We refer to these different phases as modes. A mode can 
be characterized by the state of the demand being placed on the system and the state of the 
system (that is, the configuration of resources used to satisfy the demand). 

Two commonly encountered modes are reduced capacity and overload. A system might 
have to operate with reduced capacity if resources cease to function properly. A system might 
have to sacrifice timing requirements of less important events during periods of overload. 

3.3   Factors Affecting Performance 

Performance is a function of the demand placed on the system, the types of resources used 
by the system, and how the system allocates those resources. Performance factors represent 
the important aspects of the system and its environment that influence the performance con- 
cerns. There are environment performance factors (demand) and system performance fac- 
tors. 

• demand - How many events streams are there? What are the arrival rates 
associated with each event stream? What is the resource usage associated 
with responding to each event? 

• system - What are the properties of the scheduler used to allocated 
resources, the properties of the software operations that comprise the 
responses to events and the relationships between responses? 

3.3.1    Demand 

Demand is a characterization of how much of a resource is needed. Demand can be thought 
of in terms of how much utilization a specific event requires. However, it is useful to think of 
demand in terms of 

• arrival pattern for each event stream and 

• execution time requirements for responding to each event 

The arrival pattern and execution time are important since these are two pieces of information 
that can be used by scheduling theory and/or queuing theory for predicting latency and/or 
throughput. The arrival pattern is either periodic or aperiodic. 
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• Periodic arrivals occur repeatedly at regular intervals of time. 

• Aperiodic arrivals occur repeatedly at irregular time intervals. The frequency 
of arrival can be bounded by a minimum separation (also known as sporadic) 
or can be completed random [Lehoczky94, pp. 1011-1012]. 

For execution times, the worst-case and best-case execution times can be used to help define 
boundary-case behavior. Queuing theoretic techniques specify execution times using proba- 
bility distribution functions. 

3.3.2    System 

Resources comprise a system and are needed to carry out event responses. We think of the 
system in terms of 

• types of resources 

• software services for managing resources 

• resource allocation 

Common resource types are: CPU, memory, I/O device, backplane bus, network, and data ob- 
ject. Associated with each type of resource there are software services for managing the use 
of the resource and resource allocation policies. It is beyond the scope of this paper to discuss 
all of these resource types. We will focus on operating systems services and CPU scheduling. 

A primary factor that influences the concerns of performance is the software services that are 
provided to allocate resources and to provide an interface to resources. These software ser- 
vices are usually provided by the operating system. For this discussion we will focus our at- 
tention on real-time operating systems, since real-time operating systems are explicitly 
concerned with time and thus serve to highlight some of the important issues. 

Stankovic groups real-time operating systems into three categories [Stankovic 94]: 

• small, fast proprietary kernels 

• real-time extensions of commercial operating systems 

• research-oriented operating systems 

Some of the important factors of an OS discussed by Stankovic that can affect performance 
are: context switch times; interrupt latency; time during which interrupts are disabled; use of 
virtual memory; bounds on the execution of system calls; precision of timer facilities; support 
for predictable communication; scheduling overhead; non-preemptible sections and FIFO 
queues. Other important OS factors [Klein 93, p. 7-4] are: priority of the OS service; implicit 
use of shared resources; and limited representations of application or system parameters 
such as insufficient number of priority levels or insufficient precision in time representation. 

The resource allocation policy (that is, scheduling algorithm) used to resolve contention for 
shared resources has a primary influence on the performance of a system. Scheduling algo- 
rithms can be distinguished by whether the schedule is constructed off-line or on-line [Lehoc- 
zky 94]. 
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Off-line scheduling requires complete knowledge of all events and their responses. This 
knowledge is used to construct a time-line in advance of program execution that lays out the 
order in which all event responses will be executed. This type of scheduling strategy is known 
as a cyclic executive [Locke 92]. This strategy can be very efficient and simple for cases in 
which there are a small number of periodic events with periods that are close to harmonic. In 
these cases predicting the performance of a system is very straightforward since it has been 
completely predetermined. However, as systems became more complex it was realized that 
cyclic executives were relatively inflexible in the face of the inevitable modifications made to 
systems. 

In on-line scheduling, decisions are made at run-time and thus they tend to be more flexible 
than off-line algorithms. Static-priority algorithms (e.g., rate monotonic and deadline monoton- 
ic scheduling algorithms) assign a priority to the response to the event; the response uses that 
priority for responding to every event in the event stream. Dynamic-priority algorithms (e.g., 
earliest deadline first, least laxity first, best-effort scheduling) allow event responses to change 
the priority for every invocation and during a single response. 

3.4   Methods 

Methods to achieve performance include the following: 

Synthesis—methods used to synthesize (such as real-time design methodologies) a system 
or Smith's software performance engineering philosophy as discussed in [Smith 90]. 

Analysis—techniques used to analyze system performance such as queuing analysis and 
scheduling analysis. 

3.4.1 Synthesis 

Smith [Smith 90, p. 14] advocates a philosophy of software performance engineering intended 
to augment rather than supplant other software engineering methodologies. The goal is to car- 
ry out the fundamental engineering steps of understanding, creating, representing and evalu- 
ating, but to complement these steps with an explicit attention paid to performance. This 
manifests itself in developing models to represent the performance of the system early, and 
continuous evaluation of the performance of the system as it evolves. 

3.4.2 Analysis 

Performance analysis methods seem to have grown out of two separate schools of thought, 
queueing theory and scheduling theory. 

Queueing theory — Queuing theory can be used to model systems as one or more service 
facilities that perform services for a stream of arriving customers. Each arrival stream of cus- 
tomers is described using a stochastic process. Each service facility comprises a server and 
a queue for waiting customers. Service times for customers are also described using stochas- 
tic processes. Queuing analysis is mostly concerned with average case aggregate behaviors 
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—which is appropriate for performance capacity planning and management information sys- 
tems, for example. However, when worst-case behavior is of interest, scheduling analysis 
might be more appropriate. 

Scheduling theory— Classical scheduling theory has its roots in job-shop scheduling [Audsley 
95, p. 176]. Many of the results of scheduling are either directly applicable to performance 
analysis of real-time systems or offer valuable intuition. Many of these are summarized in 
[Stankovic 95]. Many of the analysis techniques relevant to static priority preemptive schedul- 
ing are discussed in [Lehoczky 94]. 

The analysis techniques that are applicable to real-time systems offer conditions under which 
specific events will meet their timing constraints. These techniques are predicated on knowing 
the conditions under which worst-case event responses will occur. Two typical types of anal- 
ysis are based on 

• computing utilization bounds 

• computing response times 

Utilization bounds are used to guarantee timing requirements by computing the utilization of 
the system and then comparing it to a theoretically-derived bound. Given the right precondi- 
tions, when utilization is kept under the specified bound, timing requirements are guaranteed 
to be met. 

Other results allow one to calculate the worst-case response times for specified events. This 
worst-case response time can then be compared to the deadline to determine if latency re- 
quirements will be satisfied. 

The use of formal methods involves developing a formal specification of the desired temporal 
behavior of a system, developing a formal specification of a design or implementation of some 
or all of the system, and finally, conducting a formal verification that the system satisfies the 
desired behavior. 

Typically, these methods involve the use of formal mathematical notations for describing the 
characteristics of a system and then use inference techniques to deduce system properties. 
Various forms of timed logic systems [Jahanian 86] or timed process algebras are used, for 
example. 

14 
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4      Dependability 

4.1   Overview 

4.1.1    Definition 

Unlike the other properties discussed in this report, the dependability community has been 
able to reach a consensus on terminology. This agreed upon terminology is codified by Laprie 
[Laprie 92]. A subsequent draft revision1 forms the basis for much of this section. 

4.1.1.1   IFIP WG10.4 Definition [Laprie 92] 

Dependability is that property of a computer system such that reliance can justifiably be 
placed on the service it delivers. Dependability has several attributes, including 

• availability— readiness for usage 

• reliability— continuity of service 

• safety— non-occurrence of catastrophic consequences on the environment 

• confidentiality— non-occurrence of unauthorized disclosure of information 

• integrity— non-occurrence of improper alterations of information 

• maintainability— aptitude to undergo repairs and evolution 

Notice that the last three attributes correspond to the safety and security areas being dis- 
cussed in other sections of this report. In [Laprie 92] confidentiality and integrity are grouped 
under the rubric "security." In a later draft [Laprie 94] the two aspects of security are called out 
as above. 

4.1.2   Taxonomy 

Figure 4-1 shows a dependability tree. In addition to the attributes of dependability, it shows 
the means to achieving dependability, and the impairments to achieving dependability. 

4.2   Concerns 

The concerns of dependability are the parameters by which the dependability of a system are 
judged. A dependability-centric view of the world subsumes the usual attributes of reliability, 
availability, safety, and security (confidentiality and integrity). Depending on the particular ap- 
plication of interest, different attributes are emphasized. 

4.2.1    Availability 

The availability of a system is a measure of its readiness for usage. Availability is always a 
concern when considering a system's dependability, though to varying degrees, depending 
upon the application. 

1 ■    [Laprie 94] J.C. Laprie (ed.) Dependability: Basic Concepts and Terminology, Revision (Draft), 1994. 
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Figure 4-1: Dependability Tree [Laprie 92] 
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Availability is measured as the limit of the probability that the system is functioning correctly at 
time t, as t approaches infinity. This is the steady-state availability of the system. It may be 
calculated [Trivedi 82] as: 

a = MTTF 

MTTF + MTTR 

where MTTF is the mean time to failure, and MTTR is the mean time to repair. 

4.2.2    Reliability 

The reliability of a system is a measure of the ability of a system to keep operating over time. 
Depending on the system, long-term reliability may not be a concern. For instance, consider 
an auto-land system. The availability requirement of this system is high—it must be available 
when called upon to land the plane. On the other hand, the reliability requirement is somewhat 
low in that it does not have to remain operational for long periods of time. 

The reliability of a system is typically measured as its mean time to failure (MTTF), the expect- 
ed life of the system. 
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4.2.3 Maintainability 

The maintainability of a system is its aptitude to undergo repair and evolution. It is less pre- 
cisely measured than the previous two concerns. MTTR is a quantitative measure of maintain- 
ability, but it does not tell the whole story. For instance, repair philosophy should be taken into 
account. Some systems are maintained by the user, others by the manufacturer. Some are 
maintained by both (e.g., the machine diagnoses a board failure, sends a message to the 
manufacturer who sends a replacement board to the user with installation instructions.) There 
is a cost vs. MTTR trade-off which comes into play. For instance, built-in diagnostics can re- 
duce the MTTR at the possible cost of extra memory, run-time, or development time. 

4.2.4 Safety 

From a dependability point of view, safety is defined to be the absence of catastrophic con- 
sequences on the environment. Leveson [Leveson 95] defines it as freedom from accidents 
and loss. This leads to a binary measure of safety: a system is either safe or it is not safe. 

Safety is treated separately elsewhere in this report. 

4.2.5 Confidentiality 

Confidentiality is the non-occurrence of unauthorized disclosure of information. It is treated 
separately, in the "Security" section of this report (see Section 5 on page 25). 

4.2.6 Integrity 

Integrity is the non-occurrence of the improper alteration of information. Along with confiden- 
tiality, this subject is treated separately in Section 5 on page 25. 

4.3   Impairments to Dependability 

The impairments to dependabilityInclude the fault, error, and failure properties of the hard- 
ware and software of which the system is comprised, as shown in Figure 4-1. 

4.3.1    Failures 

As previously stated, a system fails when its behavior differs from that which was intended. 
Notice that we define failure with respect to intent, and not with respect to the specification. If 
the intent of the system behavior ends up differing from the specification of the behavior we 
have a specification fault. 

There are many different ways in which a system can fail. As shown in Figure 4-2, the so- 
called "failure modes" of a system may be loosely grouped into three categories; domain fail- 
ures, perception by the users, and consequences on the environment. 
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Figure 4-2: The Failure Classes [Laprie 94] 

Domain failures include both value failures and timing failures. A value failure occurs when 
an improper value is computed, one inconsistent with the proper execution of the system. Tim- 
ing failures occur when the system delivers its service either too early or too late. 

An extreme form of a timing failure is the halting failure—the system no longer delivers any 
service to the user. It is difficult to distinguish a very late timing failure from a halting failure. A 
system whose failures can be made to be only halting failures is called a fail-stop system 
[Schlichting 83]. The fail-stop assumption can lead to simplifications in dependable system de- 
sign. Another special case of the halting failure which lead to simplification is one in which a 
failed system no longer generates any outputs. This is termed a fail-silent system. 

There are two types of perception failures. A failure can be either consistent, or inconsistent. 
In the case of a consistent failure, all system users have the same perception of a failure. In 
the case of an inconsistent failure, some system users may have perceptions of the failure 
which differ from each other. These sorts of failures are called Byzantine failures [Lamport 
82] and are the hardest failures to detect. 

Finally, we can grade failures by their consequences on the environment. Although extremely 
difficult to measure, failures can be classified in the range benign to catastrophic. A system 
which can only fail in a benign manner is termed fail-safe. 

4.3.2    Errors 

An error is a system state that is liable to lead to a failure if not corrected. Whether or not it 
will lead to a failure is a function of three major factors: 

18 
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1. the redundancy (either designed in or inherent) in the system 

2. the system activity (the error may go away before it causes damage) 

3. what the user deems acceptable behavior. For instance, in data transmission 
there is the notion of "acceptable error rate" 

4.3.3    Faults 

A fault is the adjudged or hypothesized cause of an error. As shown in Figure 4-3, they can 
be classified along five main axes: phenomenological cause, nature, phase of creation, sys- 
tem boundary, and persistence. 

Faults 

Cause 
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F 
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Persistence" 

Physical 

Human-Made 

Accidental 

Intentional, Non-Malicious 

Intentional, Malicious 

Development 

Operational 

Internal 

External 

Permanent 
1 Temporary 

Figure 4-3: Fault Classes [Laprie 94] 

Physical faults are those faults which occur because of adverse physical phenomena (e.g., 
lightning.) Human-made faults result from human imperfection and may be the result of many 
factors, singly or in cooperation, including poor design, inadequate manufacture, or misuse. 

Accidental faults appear to be or are created by chance. Intentional faults are created de- 
liberately, with or without malicious intent. 

Faults can be created at development time, or while the system is running (operational). 

Faults can be internal faults, which are those parts of the internal state of the system which, 
when invoked, will produce an error. Alternatively, faults can be induced externally, for in- 
stance, via radiation. 
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Finally, faults can be permanent or temporary in which case the fault disappears over time. 
Temporary faults which result from the physical environment (i.e., temporary external faults) 
are often termed transient faults. Those which result from internal faults are often termed in- 
termittent faults. 

As shown in [Laprie 94], the cross product of the above would result in 48 different fault class- 
es. However, many of these aren't meaningful. The number of important combinations is 15. 
These 15 can be loosely grouped into five more general classes; physical faults, design faults, 
interaction faults, malicious logic faults, and intrusions. See [Laprie 94]. 

4.3.4   Relationship Between Impairments 

4.3.4.1 Fault Pathology 

In the above model, faults produce errors which lead to failures. A fault that has not yet pro- 
duced an error is dormant. A fault which produces an error is called active. An error may be 
latent or detected. An error may disappear before it is detected, or before it leads to a failure. 
Errors typically propagate, creating other errors. Active faults cannot be observed, only errors 
can. A failure occurs when an error affects the service being delivered to the user. 

A system is typically built up of components. The failure of a component of a system may or 
may not result in the failure of the system. If the user does not see the service delivered by the 
failed component directly, no failure (with respect to the user) has occurred. A failure has only 
occurred with respect to the system which uses the component. 

4.3.4.2 Another View of Faults, Errors and Failures 

Some find the dichotomy just given—faults, failures, and errors—to be confusing. Heimerd- 
inger and Weinstock [Heimerdinger 92] have proposed the elimination of the term "error" as a 
way of making things more understandable. In their view, failure has the same meaning as 
previously given. However, their alternate view of fault is to consider them failures in other sys- 
tems that interact with the system under consideration—either a subsystem internal to the sys- 
tem under consideration, a component of the system under consideration, or an external 
system that interacts with the system under consideration (e.g., the environment.) Every fault 
is a failure from some point of view. A fault can lead to other faults, or to a failure, or neither. 

But what of errors? As defined above, errors are a passive concept associated with incorrect 
values in the system state. However, it is extremely difficult to develop unambiguous criteria 
for differentiating between faults and errors. Many researchers refer to value faults, which are 
also clearly erroneous values. The connection between error and failure is even more difficult 
to describe. 

However, the reality of the situation is that the fault-error-failure terminology is so well en- 
trenched that, as much as we'd like not to, we will use that view in the rest of this document. 
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4.4   Methods 

As shown in Figure 4-1, there are three major ways to achieve dependability: we can prevent 
faults from happening in the first place, we can tolerate their presence in the operational sys- 
tem, and we can remove them from the operational system once they have appeared. In ad- 
dition, the figure shows, we can evaluate how dependable the system is and use the 
information gleaned to improve it. 

In this section, we will concentrate on the last three of these means, as fault prevention 
comes under the more general heading of good software engineering practice. 

4.4.1    Fault Tolerance 

Fault 
Tolerance 

Error 
Processing 

Fault 
Treatment 

Diagnosis 

Passivation 

Reconfiguration 

Figure 4-4: Fault Tolerance [Laprie 94] 
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Forward Recovery 
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Fault-tolerant systems attempt to detect and correct latent errors before they become effec- 
tive. The dependability tree for fault tolerance is shown in Figure 4-4. The two major means 
for fault tolerance include error processing and fault treatment. 

Error processing is aimed at removing errors, if possible, before the occurrence of a failure. 
Fault treatment is aimed at preventing previously-activated faults from being re-activated. 

Error processing involves detecting that the error exists, diagnosing the damage that an error 
causes, and recovering from the error by substituting an error-free state for the erroneous 
state. Errors can be recovered from via backward recovery, forward recovery, or compensa- 
tion. 

Backward recovery replaces the erroneous state with some previous state known to be error- 
free (e.g., via checkpoints or recovery blocks.) Forward recovery repairs the system state by 
finding a new one from which the system can continue operation. Exception handling is one 
method of forward recovery. Compensation uses redundancy to mask the error and allow 
transformation (perhaps via reconfiguration) to an error-free state. Compensation is achieved 
by modular redundancy—independent computations are voted upon and a final result is se- 
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lected by majority voting. Majority voting might be supplemented with other algorithms to mask 
complex, Byzantine faults. Modular redundancy requires independence among component 
failures. This is a reasonable assumption for physical faults but questionable for software de- 
sign faults (e.g., N-version programming). 

Fault treatment steps include fault diagnosis and fault passivation (removal and reconfigura- 
tion). Fault treatment is aimed at preventing faults from being activated again. 

• Fault diagnosis consists of determining the cause(s) of error(s) in terms of 
both location and nature. 

• Fault passivation consists of removing the component(s) identified as being 
faulty from further execution. If the system is no longer capable of delivering 
the same service as before, a reconfiguration may take place. 

4.4.2    Fault Removal 
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1— Testing -J     „ 
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Symbolic Execution 
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■Diagnosis I— Deterministic/Random 

■ Correction 

Figure 4-5: Fault Removal [Laprie 94] 

As shown in Figure 4-5, fault removal \s composed of three steps: verification, diagnosis, and 
correction. The steps are performed in that order: after it has been determined that the system 
does not match its specifications through verification the problem is diagnosed and, hopefully, 
corrected. The system must then be verified again to ensure that the correction succeeded. 

Static verification involves checking the system without actually running it. Formal verification 
[Craigen 87] is one form of static verification. Code inspections or walk-throughs [Myers 79] is 
another. 

Dynamic verification involves checking the system while it is executing. The most common 
form of dynamic verification is testing. Exhaustive testing is typically impractical. Conformance 
testing checks whether the system satisfies its specification. Fault-finding testing attempts to 
locate faults in the system. Functional testing (otherwise known as blackbox testing) tests that 
the system functions correctly without regard to implementation. Structural testing (otherwise 
known as whitebox testing) attempts to achieve path coverage to ensure that the system is 
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implemented correctly. Fault-based testing is aimed at revealing specific classes of faults. Cri- 
teria-based testing attempts to satisfy a goal such as boundary value checking. Finally, the 
generation of test inputs may be deterministic or random. 

The above viewpoints may be combined. For example, the combination of fault-finding, struc- 
tural, and fault-based testing is called mutation testing [DeMillo 78] when applied to software. 

4.4.3    Fault Forecasting 

Fault 
Forecasting 

Qualitative 
forecasting 

Quantitative       |~ Modeling/Testing 
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Figure 4-6: Fault Forecasting [Laprie 94] 

As shown in Figure 4-6, fault forecasting can be qualitative or quantitative. Qualitative fore- 
casting is aimed at identifying, classifying and ordering the failure modes, or at identifying the 
event combinations leading to undesired events. Quantitative forecasting is aimed at evaluat- 
ing, in probabilistic terms, some of the measures of dependability. 

There are two main approaches to quantitative fault forecasting which are aimed at deriving 
probabilistic estimates of the dependability of the system. These are modeling and testing. 
The approaches towards modeling a system differ based on whether the system is considered 
to be stable (that is, the systems level of reliability is "unchanging") or in reliability growth (that 
is, the reliability of the system is improving over time as faults are discovered and removed.) 

Evaluation of a system in stable reliability involves constructing a model of the system and 
then processing the model. Reliability growth models [Laprie 90] are aimed at performing re- 
liability predictions from data relative to past system failures. 
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5      Security 

5.1   Overview 

5.1.1    Context of the Security Attribute 

The definition of a security attribute depends on the context in which the attribute is addressed. 
Historically, there have been three main areas which have addressed security: government 
and military applications; banking and finance; and academic and scientific applications. In 
each of these cases, different aspects of security were stressed, and the definition of individual 
security attributes depended upon the stressed security aspects. 

5.1.1.1 Government and Military 

For government and military applications, the disclosure of information was the primary risk 
that was to be averted at all costs. To achieve this, applications and operating systems were 
developed to address the separation of data and processes through hardware and software 
designs that mimicked the existing system of classified documents. The standards culminated 
in the Orange Book - DoD 5200.28.STD and its related interpretations (collectively known as 
the Rainbow Series). These documents contained a model, architecture, and method of eval- 
uation and rating for secure computing. 

5.1.1.2 Banking and Fiance 

In banking, finance, and business-related computing, the security emphasis is on the protec- 
tion of assets. While disclosure is an important risk, the far greater risk is the unauthorized 
modification of information. Protecting the integrity of information produces trust from the cus- 
tomers, and thus confidence in the institution responsible for maintaining these data and pro- 
cesses. Unlike the DoD, there is no single standard that addresses these concerns, and in 
each case the integrity of the systems and applications are embodied in the detailed require- 
ments of the systems to be developed or procured. Due to a lack of standardization in the def- 
inition of these requirements, the resulting effectiveness in terms of implemented security 
attributes varies widely. 

5.1.1.3 Academic and Scientific 

For academic and scientific computing, the main security emphasis is on protection from un- 
authorized use of resources. This stems from the time when computers and computing time 
was very expensive and a critical resources to research and scientific applications. This em- 
phasis has led to the standards that exist in system administration and intrusion detection on 
large shared networks such as the Internet. 

In the following sections, the definition and taxonomy for the security attribute will be attempt- 
ed in a generic context. One that would apply to any of the above situations. Where appropri- 
ate, the relevant standards for each context are identified. 
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5.1.2 Definition 

A general definition of security is provided in Appendix F of the National Research Council's 
report, "Computers at Risk": 

1. Freedom from danger; safety. 

2. Protection of system data against disclosure, modification, or destruction. 
Protection of computer systems themselves. Safeguards can be both 
technical and administrative. 

3. The property that a particular security policy is enforced, with some degree of 
assurance. 

4. Often used in a restricted sense to signify confidentiality, particularly in the 
case of multilevel security. 

In the case of the security attribute, the second and third definitions apply. The main elements 
of the taxonomy, then, are the protection from disclosure (confidentiality), modification (integ- 
rity), and destruction (availability). Each of these elements must be addressed in the context 
of an overall security policy. This security policy sets the context for how to establish require- 
ments and evaluate the effectiveness of each of these general categories of security. It is se- 
curity policy that distinguishes between the environments, as was specified in the introduction. 

The existing models have thus far focused primarily on the security policy that stresses confi- 
dentiality above all else, which leads to the fourth definition from Computers at Risk, as well 
as the treatment of security in other software attribute papers such as [Rushby 94]. 

5.1.3 Taxonomy 

Most existing security taxonomies are based on a risk analysis of a specific environment; that 
risk analysis is then used as a framework to describe either the security faults or protection 
mechanisms in the system. As an example, the taxonomy described in [Aslam 95] is centered 
around security faults discovered in the UNIX operating system. This taxonomy decomposes 
coding faults into units that cover typical mistakes during the engineering of software. The dif- 
ficulty is that this type of taxonomy does little to suggest how to handle security requirements 
or trade off the engineering methodologies for other quality attributes. In [Rushby 94], security 
is balanced with other quality attributes, but the definition and coverage of the security attribute 
is restricted to confidentiality. 

To bring in other aspects of security and compare them to other quality attributes, the con- 
cerns of security are broken down into the three basic categories of confidentiality, integrity, 
and availability. From these concerns, the security factors at the boundary of the systems (the 
interface or environment), and the internal factors can be identified. Once the concerns and 
factors are identified, the current broad approaches for synthesis and analysis are identified. 
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Figure 5-1: Security Taxonomy 

5.2   Concerns 

The security concerns for any given environment (based on a security policy) can be catego- 
rized into three basic types: 

• Confidentiality is the requirement that data and processes be protected 
from unauthorized disclosure. 

• Integrity is the requirement that data and process be protected from 
unauthorized modification. 

• Availability is the requirement that data and processes be protected from 
denial of service to authorized users. 
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5.2.1    Confidentiality 

Confidentiality is the property that data be unaccessible to unauthorized users. Usually, this 
requirement is specified in terms of a security policy, which in turn places requirements on the 
design and implementation of a system. For example, in a military environment it may be nec- 
essary to process both secret and confidential data on a single system. The confidentiality re- 
quirement, then, is that access to the secret information be restricted to only those users with 
the appropriate clearance.This requirement has a strong impact on the design of the file sys- 
tem, access control, process control, authentication, and administration of the resulting sys- 
tem. 

A fault concerning confidentiality results in the unauthorized disclosure of information or pro- 
cess control.This fault can occur in the normal operation of the system by a fault in the imple- 
mentation or in the interface through inadequate design specification. 

The strength of confidentiality in a system is usually measured in the resources required to 
disclose information in a system. For a communication system, this may be stated as the time 
it would take an adversary with the resources of a foreign power to read a communication cop- 
ied during transit (this measure is often used for data encryption). An internal measure of con- 
fidentiality may be to restrict the bandwidth of covert channels1 to a given number of bits per 
second. 

5.2.2    Integrity 

Integrity is the property that the data be resistant to unauthorized modification. Like confiden- 
tiality, this must be in relation to a security policy that defines which data should be modified 
by whom so that there is a clear definition of unauthorized modification. One example of this 
is that the password file on UNIX systems should be modified only by the root user. A require- 
ment associated with integrity is often specified as a file access requirement. For operating 
systems or database systems, this is specified as write access to a file. In more general terms, 
the integrity requirement may be used for either data or processes to specify how modifica- 
tions are made to data or how control is passed to processes. 

An integrity fault results in unauthorized modification or destruction of data or processes in a 
system. In the case of a "trusted" system, a loss of integrity may also lead to a loss of trust in 
all down-stream or dependent data or processes in a system. In this way, loss of integrity may 
be propagated through the dependencies associated with the original information modified 
without authorization. For example, if the underlying operating system of a financial computer 
is modified, it may cause all data processed by this system to be modified without authoriza- 
tion in violation of policy. 

Covert channels are communication of information through data paths not explicitly specified during the de- 
sign, such as locking IO devices or controlling the number of processes started. 
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Integrity is usually measured by the time and resources it would take an adversary to modify 
data or processes without authorization. These measures are often subjective or dependent 
on the average time to guess a specific integrity checksum. When cryptographic methods are 
used to guarantee the integrity of a system, the metrics are very similar to those for confiden- 
tiality as described above. In addition, however, integrity measures are often associated with 
mean time to failure in software systems, as these failures are equivalent to unauthorized 
modification. 

5.2.3   Availability 

Availability is the property that the resources that should be available to authorized user actu- 
ally are available. This property is closely associated with availability in other quality attribute 
domains (i.e., safety and dependability), but is usually defined in terms of the amount of time 
it would take an active intruder to cause a denial of service. A fault associated with availability 
is a denial of service attack. Unlike the other quality attributes, a fault associated with avail- 
ability in the security attribute is a denial of service caused by an adversary rather than a ran- 
dom fault of hardware or software. 

As in dependability, availability is usually measured proportional to mean time to failure (see 
the definition in the section on Dependability). During the requirement definition or design of a 
system, availability is required for security critical aspects of any given system. For example, 
it is usually required that the auditing and alarm systems in a secure operating system be 
available whenever it is possible to start processes on a system. 

5.3   Security Factors 

The factors regarding security are grouped according to whether they are associated with the 
interface to a system, or are internal to the operation of a system. Both sets of factors are com- 
monly known as security features. 

5.3.1    Interface 

The interface factors are those security features that are available for the user or between sys- 
tems. The main types of interface features are 

• authentication services 

• encryption services 

• auditing and analysis services 

Authentication services are those that perform the mapping between the user's identity within 
the system or application and the person or system accessing the system. This service is es- 
sential for many of the concerns in security, as most of the internal security decisions rely on 
correctly identifying and authenticating the user or system. There are many types of authenti- 
cation, including password, bio-metric, third-party, and capability-based. 
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Encryption services are data or control protection between the internal system or application 
and the user accessing the interface. These may take place on a link between systems where 
the isolation of the intermediate transfer mechanism cannot be assured. Encryption services 
may also serve to verify the integrity of information through the interface by using cryptograph- 
ically strong checksum information. Encryption services are often employed in protocols be- 
tween system components or across communication links. 

Auditing and analysis services are used primarily for the security administrator of a system to 
detect unauthorized activities or to discover the history of some access or transaction. These 
security services often serve as an alarm to alert an outside user of a policy violation detected 
on some internal component. 

5.3.2    Internal 

Internally, security factors take a variety of design strategies. There are no generally accepted 
principles for the internal security factors, but three common areas for security factors are in 
the access control system, a secure kernel, and in auditing and logging. 

Access control refers to all access to internal objects. These include data and processes and 
access by both internal objects and external users. Data access is usually accomplished 
through a file system abstraction; the types of access control depend on how objects and data 
are described in the security policy. One common model for access control is the access ma- 
trix (as embodied in the Bell-LaPadula model described in DoD 5200.28). Access to processes 
usually centers around ownership of the process, but in some secure systems the process is 
treated as a data object with the same set of access control restrictions as is provided by the 
file system abstraction. 

Kernelization is the abstraction of all security-related functionality to a small (and hopefully 
provably secure) kernel with a strictly defined interface for the rest of the system. This is the 
preferred design for DoD secure systems as it abstracts and contains all of the critical security 
functionality to a small subset of the overall system. 

The auditing and logging security features are often used as add-on security features to ap- 
plications and operating systems that were not originally designed with strong security in mind. 
These internal factors assure that any action taken internally can be logged and audited so 
that in the event of a security violation the actions may be attributed to the base cause. These 
features are also used in conjunction with access control and kernelization to provide tracing 
ability in secure systems. 
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5.4   Methods 

Methods to achieve security include the following: 

Synthesis—Methods used to synthesize a secure system include process models such as the 
Trusted System Design Methodology (TSDM94) or the Trusted Capability Maturity Model 
(TCMM95), security models such as the Mach Security Kernel, and secure protocols such as 
Kerberos. 

Analysis—Techniques used to analyze system security include formal method, penetration 
analysis, and covert-channel analysis. 

5.4.1 Synthesis 

Process models. The most common technique for developing a secure computing system as 
regulated by DoD 5200.28 is to use a process model that involves formal design, integration, 
and testing. Two recent additions to this description are the TSDM and the TCMM. 

Security models. Another method of synthesis is to modify an existing security model for de- 
sign and implementation to suit another application or system. The Mach Security Kernel is a 
kemelized model and reference implementation that is often used as a basis to synthesize 
new systems taking into account security requirements. The reuse of other security compo- 
nents such as auditing or intrusion detection tools is another method of synthesizing a com- 
plex system from base components. 

Secure protocols. For other distributed applications, a standard security protocol may be used 
to build security functionality on existing or new applications. The Kerberos family of protocols 
uses a third-party authenticating mechanism and well defined interface to address security 
concerns within systems and applications. 

5.4.2 Analysis 

Formal Methods. For highly secure systems, formal analysis of the design and specification 
of the system is used to verify that the design of the system meets the requirements and spec- 
ification of the security policy. 

Penetration Analysis. For most systems that address security, penetration analysis is per- 
formed during the testing phases of the system. This employs standard attack scenarios to 
determine if the system is resilient to these attacks. This analysis has the drawback of not ad- 
dressing attacks unknown at the time of the test. 

Covert-Channel Analysis. Covert-channel analysis is usually performed on multi-level secure 
systems as specified in DoD 5200.28 to determine the bandwidth of any secondary data chan- 
nel that is identified in the system. 
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6      Safety 

6.1 Overview 

6.1.1 Definition 

As previously stated, dependability is that property of a computer system such that reliance 
can justifiably be placed in the service it delivers [Laprie 94]. 

Paraphrasing this definition, we can define safety as that property of a computer system such 
that reliance can justifiably be placed in the absence of accidents. 

• Dependability is concerned with the occurrence of failures, defined in terms 
of internal consequences (services are not provided). 

• Safety is concerned with the occurrence of accidents or mishaps, defined in 
terms of external consequences (accidents happen). 

The difference of intents—"good things (services) must happen" vs. "bad things (accidents) 
must not happen"—gives rise to the following paradox: If the services are specified incorrectly, 
a system can be dependable but unsafe; conversely, it is possible for a system to be safe but 
undependable. 

• A system might be dependable but unsafe — for example, an avionics 
systems that continues to operate under adverse conditions yet directs the 
aircraft into a collision course. 

• A system might be safe but undependable — for example, a railroad 
signaling system that always fails-stops. 

6.1.2 Taxonomy 

The taxonomy for the safety attributes defines conditions of the system (hazards) that might 
lead to undesirable consequences (mishaps); methods normally used to identify hazards, 
evaluate the consequences of a hazard, and eliminate or reduce the possibility of mishaps; 
and indicators of safety in the aggregate (system, environment, users and operators). 

6.2 Concerns 

Perrow [Perrow 84] identifies two properties of critical systems that can serve as indicators of 
system safety: interaction complexity and coupling strength. 

6.2.1    Interaction Complexity 

Interaction complexity ranges from linear to complex and is the extent to which the behavior 
of one component can affect the behavior of other components. Linear interactions are those 
in expected and familiar production or maintenance sequence, and those that are quite visible 
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Figure 6-1: Safety Taxonomy 

even if unplanned. Complex interactions are those of unfamiliar sequences, or unplanned 
and unexpected sequences, and either not visible or not immediately comprehensible. [Per- 
row 84, Table 3.1] suggests the following indicators of interaction complexity: 

Indicators of complex interactions include 

• proximity—physical (components) or logical (steps) 

• common-mode connections 

• interconnected subsystems 

34 
CMU/SEI-95-TR-021 



• limited isolation or substitution of failed components 

• unfamiliar or unintended feedback loops 

• multiple and interacting control parameters 

• indirect or inferential information sources 

• limited understanding of some processes 

Indicators of linear interactions include 

• segregation between components or steps 

• dedicated connections 

• segregated subsystems 

• easy isolation and substitutions 

• few feedback loops 

• single purpose, segregated controls 

• direct, on-line information 

• extensive understanding 

6.2.2   Coupling Strength 

Coupling strength ranges from loose coupling to tight coupling and is the extent to which 
there is flexibility in the system to allow for unplanned events. Tightly coupled systems have 
more time-dependent processes: they cannot wait or stand by until attended to; the sequences 
are more invariant and the overall design allows for very limited alternatives in the way to do 
the job; they have "unifinality"—one unique way to reach the goal. Loosely coupled process- 
es can be delayed or put in standby; sequences can be modified and the system restructured 
to do different jobs or the same job in different ways; they have "equifinality"—many ways to 
reach the goal. [Perrow 84, Table 3.2] suggests the following indicators of coupling strength: 

Indicators of tight coupling include 

• delays in process not possible 

• invariant sequences 

• only one method to achieve goal 

• little slack [in resources] possible 

• buffers and redundancies are designed-in, deliberate 

• substitutions [of resources] limited and designed-in 

Indicators of loose coupling include 

• processing delays possible 

• order of sequences can be changed 

• alternative methods available 
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• slack in resources possible 

• buffers and redundancies fortuitously available 

• substitutions fortuitously available 

6.2.3   Advantages and Disadvantages 

There are advantages and disadvantages of the extremes of interaction and coupling [Rushby 
93]. 

Complex interactions can be undesirable because interactions and their consequences can 
be hard to understand, predict, or even enumerate. In general, hazard analysis demands few 
linear and known interactions to facilitate analysis. 

Tight coupling can be undesirable because the system can be hard to adapt to changing sit- 
uations. Safety mechanisms demand loose coupling to prevent cascading of failures and to 
allow reconfigurations and intervention by operators. 

Nevertheless, complex interactions and tight coupling are often desirable to promote perfor- 
mance (shared address space), dependability (N-modular redundancy, transactions), or se- 
curity (authentication protocols, firewalls). 

Finally, the degree of interaction and coupling could be inherent to the application or problem 
domain. Smarter design or experience might reduce them, but often we do not have many 
choices. 

6.3 Factors 

Hazards are conditions (i.e., state of the controlled system) that can lead to a mishap. 

Mishaps are unplanned events that result in death, injury, illness, damage or loss of property, 
or harm to the environment. 

The occurrence or non-occurrence of a mishap may depend on conditions beyond the control 
of the system thus, in safety engineering, attention is focused on preventing hazards rather 
that preventing mishaps directly. 

6.4 Methods 

The safety engineering approach consists of 

• hazard identification and analysis processes 

• implementation methodologies and mechanisms 

Hazard identification and hazard analysis are performed at several different stages of the de- 
sign lifecycle (e.g., preliminary, subsystem, system, operational hazard analysis). 
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The objective of the implementation methodologies and mechanisms is to avoid the introduc- 
tion of errors during the development process or to detect and correct errors during operation. 

Notions from system safety engineering can be applied to software — the basic idea is to fo- 
cus on consequences that must be avoided rather than on the requirements of the system it- 
self. Techniques proposed to conduct hazard identification and analysis in software-intensive 
systems are derived from well-known techniques used in industry (e.g., chemical process). 
However, software-specific hazard identification and analysis techniques are not well estab- 
lished and lack adequate integrated tools. 

6.4.1 Hazard Identification 

Hazard identification attempts to develop a list of possible system hazards before the system 
is built. This can be expensive and time consuming and must be performed by application do- 

main experts. 

• Brainstorming—experts generate list of possible system hazards until some 
threshold (e.g., time to identify new hazards) is reached. 

• Consensus techniques — facilitated iteration among experts with specific 
responsibilities and well defined goals. Example techniques are Delphi and 
Joint Application Design. 

• Hazard and Operability Analysis (HAZOP) — evaluates a representation 
of a system and its operational procedures to determine if humans or 
environment will be exposed to hazards and the possible measures that 
might be employed to prevent the mishap. The procedure is to search the 
representation, element by element, for every conceivable deviation from its 
normal operation, followed by group discussions of causes and 
consequences. 

6.4.2 Hazard Analysis 

Following the identification of a hazard, the hazard analysis process consists of the following 
risk mitigation steps: 

1. Categorize hazard on a scale from catastrophic to negligible. Catastrophic 
hazards have the potential to lead to extremely serious consequences. Neg- 
ligible hazards have no significant consequences. 

2. Determine how or whether that hazard might arise using backward reasoning 
from the hazard (what could possibly cause this situation?) or forward 
reasoning from the hypothesized failure (what could happen if this failure 
occurs?) 

3. Remove hazards with unacceptable risk through re-specification, redesign, 
incorporating safety features or warning devices, or instituting special 
operating and training procedures. 

Common techniques for hazard analysis include Fault Tree Analysis (FTA), Event Tree 
Analysis (ETA) and Failure Modes and Effects Analysis (FMEA). 
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Fault Tree Analysis (FTA) is a technique that was first applied in the 1960s to minimize the risk 
of inadvertent launch of a Minuteman missile. The hazard to be analyzed is the root of the tree. 

• Necessary preconditions for the hazard are describing at the next level in the 
tree, using AND or OR relationships to link subnodes 

• Subnodes are expanded in similar fashion until all nodes describe events of 
calculable probability or are incapable of further analysis for some reason. 

Software Fault Tree Analysis (SFTA) is an adaptation to software of a safety engineering 
analysis methodology. The goal of SFTA is to show that the logic contained in the software 
design will not cause mishaps, and to determine conditions that could lead to the software con- 
tributing to a mishap. The process is as follows: 

1. Use hazard analysis to identify a possible condition for a mishap. 

2. Assume that software has caused the condition. 

3. Work backwards to determine the set of possible  causes  (including 
environment, hardware, and operator) for the condition to occur. 

SFTA differs from conventional software inspection techniques in that it forces the analysis to 
examine the program from a different perspective than that used in development. 

Event Tree Analysis (ETA) reverses the order followed in FTA. Starting with some initiating 
(desirable or undesirable) event, a tree is developed showing all possible (desirable and un- 
desirable) consequences. This technique requires judicious selection of the initiating events 
to keep the cost and time required for within reason. 

Failure Modes and Effects Analysis (FMEA) attempts to anticipate potential failures so that the 
sources of these failures can be eliminated. 

An FMEA table identifies, for each component failure 

• the frequency of occurrence (rare to common) 

• the severity of the effect (minor to very serious) 

• the chances of detection before deployment (certain to impossible) 

The product of all three elements is a "risk priority number" which can be used to determine 
how effort should be spent during development. 

FMEA uses both Event Tree Analysis (to determine the effects of a component failure) and 
Fault Tree Analysis (to determine the cause of a component failure) iteratively. 

Frequency of occurrence, severity of failure, and chances of detection are simple integer val- 
ues (e.g., 1 to 10) and are assigned based on knowledge and experience of the developers. 

An extension of FMEA is Failure Modes, Effects, and Criticality Analysis (FMECA)—it uses a 
more formal criticality analysis to rank the results than just the result of multiplying the three 
factors. 
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6.4.3    Implementation Methodologies 

The objective is to avoid introducing errors during the development process and, if unavoid- 
able, detect and correct them during operation. 

Different implementation methodologies are applicable during the development phases. 

Requirements — Specification, analysis and validation using notations with various degrees 
of formality (e.g., Petri-nets, state machines, Statecharts). Requirements expressed in natural 
languages are often ambiguous or incomplete. The first step must be to represent the require- 
ments in a notation that is not ambiguous and can be analyzed, that is, generate a specifica- 
tion of the behavior of the system (and validate it with the customer!). 

• The specification must be analyzed for inconsistencies and incompleteness, 
although the latter depends on the expertise of the analysts rather than the 
specification technique used. 

• Some specifications can be "executed" and the behavior of the system can 
thus be simulated; other specifications can be validated through symbolic 
execution to predict behavior given some initial state and a set of inputs 

Design — Using formal methods—i.e., a formal design notation—and proving that it satisfies 
the specification or derive the design by transformation of the specification. There are a num- 
ber of design notations; however, errors can be introduced that can only be detected by com- 
paring to the specification. This proof can be hard, and the use of two different notations 
makes tracing requirements to design more difficult. 

Implementation — Strict version management to retain confidence that the source code that 
is analyzed is the code used to build the system and formally verified source code translators 
(and hardware). Successive transformations of the specification reduces the introduction of 
errors but there are now many more representations of the system—making the requirements 
tracking even more difficult. 

6.4.4   Implementation Mechanisms 

Traditional implementation mechanisms employed in safety-engineering include 

• lockins — lock the system into safe states 

• lockouts — lock the system out of hazardous states 

• interlocks — prescribe or disallow specific sequences of events 

There are software analogs to these mechanisms but they must be implemented carefully — 
a "design for safety" must keep the system always in a safe state, even if the service is not 
available (i.e., the system is "unreliable"). 
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For example, monitoring a set of variables that must be between certain limits for safe opera- 
tion. The naive approach might declare the variables to be "OK" by default and then do a linear 
scan to see if one of them is off-bounds in order to trigger a safety shutdown. If the scan is 
interrupted or stalled, certain variables that should be tripped might not be examined, and the 
safety shutdown might not occur when it should. 
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7      Relationships Between Attributes 

Each of the attributes examined has evolved within its own community. This has resulted in 
inconsistencies between the various points of view. 

7.1 Dependability Vis-a-vis Safety 

The dependability tradition tries to capture all system properties (e.g., security, safety) in terms 
of dependability concerns—i.e., defining failure as "not meeting requirements." It can be ar- 
gued that this is too narrow because requirements could be wrong or incomplete and might 
well be the source of undesired consequences. A system could allow breaches in security or 
safety and still be called "dependable." 

The safety engineering approach explicitly considers the system context. This is important be- 
cause software considered on its own might not reveal the potential for mishaps or accidents. 
For example, a particular software error may cause a mishap or accident only if there is a si- 
multaneous human and/or hardware failure. Alternatively, it may require an environment fail- 
ure to cause the software fault to manifest itself. 

For example [Rushby 93], a mishap in an air traffic control system is a mid-air collision. A mid- 
air collision depends on a number of factors: 

• the planes must be too close 

• the pilots are unaware of that fact or 

• the pilots are aware but 

• fail to take effective evading action 

• are unable to take effective evading action 

• etc. 

The air traffic control system cannot be responsible for the state of alertness or skill of the pi- 
lots; all it can do is attempt to ensure that the planes do not get too close together in the first 
place. 

Thus, the hazard (i.e., erroneous system state that leads to an accident) that must be con- 
trolled by the air traffic control system is, say, "planes getting closer than two miles horizontal- 
ly, or 1,000 feet vertically of each other." 

7.2 Precedence of Approaches 

Safe software is always secure and reliable — Neumann [Neumann 86] presents a hierarchy 
of reliability, safety, and security. Security depends on reliability (an attribute of dependability) 
and safety depends on security, hence, also reliability. 

CMU/SEI-95-TR-021 41 



• A secure system might need to be reliable because a failure might 
compromise the system's security (e.g., assumptions about atomicity of 
actions might be violated when a component fails). 

• The safety critical components of a system need to be secure to prevent 
accidental or intentional alteration of code or data that were analyzed and 
shown to be safe. 

• Finally, safety depends on reliability when the system requires the software 
to be operational to prevent mishaps. 

Enhancing reliability is desirable, and perhaps necessary, but it is not sufficient to ensure safe- 
ty. As noted in [Rushby 93], the relationships are more complex than a strict hierarchy: 

• Fault tolerant-techniques can detect security violations — Virus detected 
through N-version programming, intrusions detected automatically as latent 
errors, and denial detected as omission or crash failures. 

• Fault containment can enhance safety by ensuring that the consequences of 
a fault do not spread and contaminate other components of a system. 

• Security techniques can provide fault containment through memory 
protection, control of communications, and process walls. 

• A security kernel can enforce safety using runtime lockin mechanisms for 
"secure" states and interlocks to enforce some order of activities. 
Kernelization and system interlocks are primarily mechanisms for avoiding 
certain kinds of failure and do very little to ensure normal service. 

• A kernel can achieve influence over higher levels of the system only 
through the facilities it does not provide — if a kernel provides no 
mechanism for achieving certain behaviors, and if no other mechanisms 
are available, then no layers above the kernel can achieve those 
behaviors. 

• The kinds of behaviors that can be controlled in this way are primarily 
those concerning communication, or the lack thereof. Thus, kernelization 
can be used to ensure that certain processes are isolated from each 
other, or that only certain inter-process communication paths are 
available, or that certain sequencing constraints are satisfied. 

• Kernelization can be effective in avoiding certain faults of commission 
(doing what is not allowed) but not faults of omission (failing to do what is 
required)—that is, a security kernel cannot ensure that the processes 
correctly perform the tasks required of them. 

7.3   Applicability of Approaches 

The methods and mind set associated with each of the attributes examined in this report have 
evolved from separate schools of thought. Yet there appear to be common underpinnings that 
can serve as a basis for a more unified approach for designing critical systems. For example: 
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• Safety and dependability are concerned with detecting error states (errors in 
dependability and hazards in safety) and preventing error states from 
causing undesirable behavior (failures in dependability and mishaps in 
safety). 

• Security and performance are concerned with resource management 
(protection of resources in security and timely use of resources in 
performance.) 

The previous section offered examples of the applicability of methods usually associated with 
one attribute to other attributes. 

The applicability of methods developed for one attribute to another attribute suggests that dif- 
ferences between attributes might be as much a matter of sociology as technology. Neverthe- 
less, there are circumstances for which an attribute-specific mind set might be appropriate. 
Examples include the following: 

• The dependability approach is more attractive in circumstances for which 
there is no safe alternative to normal service—a service must be provided 
(e.g., air traffic control). 

• The safety approach is more attractive where there are specific undesired 
events — an accident must be prevented (e.g., nuclear power plant). 

• The security approach is more attractive when dealing with faults of 
commission rather than omission — service mustnotbe denied, information 
must not be disclosed. 

This is not to suggest that other attributes could be ignored. Regardless of what approach is 
chosen, we still need a coordinated methodology to look at all of these attributes together, in 
the context of a specific design. In the next chapter we sketch a plan of activities that would 
lead to an attribute-based methodology for evaluating the design of an artifact—more specif- 
ically, for evaluating a software architecture with respect to these attributes. 

CMU/SEI-95-TR-021 43 



44 CMU/SEI-95-TR-021 



8      Quality Attributes and Software Architecture 

A (software) system architecture must describe the system's components, their connections 
and their interactions, and the nature of the interactions between the system and its environ- 
ment. Evaluating a system design before it is built is good engineering practice. A technique 
that allows the assessment of a candidate architecture before the system is built has great val- 
ue. 

The architecture should include the factors of interest for each attribute. Factors shared by 
more than one attribute highlight properties of the architecture that influence multiple attribute 
concerns and provide the basis for trade-offs between the attributes. A mature software engi- 
neering practice would allow a designer to predict these concerns through changes to the fac- 
tors found in the architecture, before the system is built. 

We intend to continue our work by exploring the relationships between quality attributes and 
software architectures. All the attributes examined in this report seem to share classes of fac- 
tors. There are events (generated internally or coming from the environment) to which the sys- 
tem responds by changing its state. These state changes have future effects on the behavior 
of the system (causing internal events or responses to the environment). The "environment" 
of a system is an enclosing "system," and this definition applies recursively, up and down the 
hierarchy. For example varying arrival patterns (events) cause system overload (state) that 
lead to jitter (event); faults (events) cause errors (state) that lead to failure (events); hazards 
(events) cause safety errors that lead to mishaps (events); intrusions (events) cause security 
errors that lead to security breaches (events). Additional classes of factors to consider include 
the policies and mechanisms used for process creation, allocation, address space sharing, 
connection, communication method, interaction style, synchronization, and composition of ac- 
tions. 

Architecture patterns are the building blocks of a software architecture. Examples of patterns 
include pipes-and-filters, clients-and-servers, token rings, blackboards, etc. The architecture 
of a complex systems is likely to include instances of more than one of these patterns, com- 
posed in arbitrary ways. Collections of architecture patterns should be evaluated in terms of 
quality factors and concerns, in anticipation of their use. That is, it is conceivable that archi- 
tecture patterns could be "pre-scored" to gain a sense of their relative suitability to meet quality 
requirements should they be used in a system. 

In addition to evaluating individual patterns, it is necessary to evaluate compositions of pat- 
terns that might be used in an architecture. Identifying patterns that do not "compose" well (i.e., 
the result is difficult to analyze or the quality factors of the result are in conflict with each other) 
should steer a designer away from "difficult" architectures, towards architectures made of well 
behaved compositions of patterns. 
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In the end, it is likely that we will need both quantitative and qualitative techniques for evalu- 
ating patterns and architectures. Promising quantitative techniques include the various mod- 
eling and analysis techniques, including formal methods mentioned in this report. An example 
of a qualitative technique is being demonstrated in a related effort at the SEI. The Software 
Architecture Analysis Method (SAAM) [Clements 95, Kazman 95] illustrates software architec- 
ture evaluations using "scenarios" (postulated set of uses or transformations of the system). 
Scenarios are rough, qualitative evaluations of an architecture; scenarios are necessary but 
not sufficient to predict and control quality attributes and have to be supplemented with other 
evaluation techniques (e.g., queuing models, schedulability analysis). Architecture evalua- 
tions using scenarios should be enriched by including questions about quality indicators in the 
scenarios. 
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Appendix A     Glossary 

accidental faults — faults created by chance. 

active fault — a fault which has produced an error. 

aperiodic — an arrival pattern that occurs repeatedly at irregular time intervals. The frequency 
of arrival can be bounded by a minimum separation (also known as sporadic) or can be com- 
pletely random. 

attribute specific factors — properties of the system (such as policies and mechanisms built 
into the system) and its environment that have an impact on the concerns 

availability — a measure of a system's readiness for use. 

benign failure — a failure that has no bad consequences on the environment. 

Byzantine failure — a failure in which system users have differing perceptions of the failure. 

capacity — a measure of the amount of work a system can perform. 

catastrophic failure — a failure that has bad consequences on the environment it operates 
in. 

complex interactions — those of unfamiliar sequences, or unplanned and unexpected se- 
quences, and either not visible or not immediately comprehensible. 

component coupling — the extent to which there is flexibility in the system to allow for un- 
planned events. Component coupling ranges from tight (q.v.) to loose (q.v.) 

confidentiality — the non-occurrence of the unauthorized disclosure of information. 

consistent failure — a failure in which all system users have the same perception of the fail- 
ure. 

criticality — the importance of the function to the system. 

dependability — that property of a computer system such that reliance can justifiably be 
placed on the service it delivers. 

dependability impairments — the aspects of the system that contribute to dependability. 

dormant fault — a fault that has not yet produced an error. 

error — a system state that is liable to lead to a failure if not corrected. 

event — a stimulus to the system signaling the need for the service. 
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event stream — a sequence of events from the same source—for example, a sequence of 
interrupts from a given sensor. 

Event Tree Analysis (ETA) — a technique similar to Fault Tree Analysis. Starting with some 
initiating (desirable or undesirable) event, a tree is developed showing all possible (desirable 
and undesirable) consequences. 

fail-safe — a system which can only fail in a benign manner. 

fail-silent — a system which no longer generates any outputs. 

fail-stop — a system whose failures can all be made into halting failures. 

failure — the behavior of a system differing from that which was intended. 

Failure Modes and Effects Analysis (FMEA) — a technique similar to Event Tree Analysis 
(ETA). Starting with potential component failures, identifying its consequences, and assigning 
a "risk priority number" which can be used to determine how effort should be spent during de- 
velopment. 

Failure Modes, Effects, and Criticality Analysis (FMECA) — an extension of Failure Modes 
Effects Analysis (FMEA) that uses a more formal criticality analysis. 

fault — the adjudged or hypothesized cause of an error. 

fault avoidance — see fault prevention. 

fault forecasting — techniques for predicting the reliability of a system over time. 

fault prevention — design and management practices which have the effect of reducing the 
number of faults that arise in a system. 

fault removal — techniques (e.g., testing) involving the diagnosis and removal of faults in a 
fielded system. 

fault tolerance — runtime measures to deal with the inevitable faults that will appear in a sys- 
tem. 

Fault Tree Analysis (FTA) —a technique to identify possible causes of a hazard. The hazard 
to be analyzed is the root of the tree and each necessary preconditions for the hazard or con- 
dition above are described at the next level in the tree, using AND or OR relationships to link 
subnodes, recursively 

halting failure — a special case of timing failure wherein the system no longer delivers any 
service to the user. 

hazard — a condition (i.e., state of the controlled system) that can lead to a mishap. 
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Hazard and Operability Analysis (HAZOP) — evaluates a representation of a system and 
its operational procedures to determine possible deviations from design intent, their causes, 
and their effects. 

human-made faults — those resulting from human imperfection. 

impairments to dependability — those aspects of the system that contribute to how the sys- 
tem (mis)behaves from a dependability point of view. 

inconsistent failure — see Byzantine failure. 

integrity — the non-occurrence of the improper alteration of information. 

intentional faults — faults created deliberately, with or without malicious intent. 

interaction complexity — the extent to which the behavior of one component can affect the 
behavior of other components. Interaction complexity ranges from linear (q.v.) to complex 
(q.v.). 

interlocks — implementation techniques that prescribe or disallow specific sequences of 
events. 

intermittent faults — a temporary fault resulting from an internal fault. 

internal faults — those which are part of the internal state of the system. 

jitter — the variation in the time a computed result is output to the external environment from 
cycle to cycle 

latency — the length of time it takes to respond to an event. 

latency requirement — time interval during which the response to an event must be execut- 
ed. 

latent error — an error which as not yet been detected. 

linear interactions — interactions that are in expected and familiar production or mainte- 
nance sequence, and those that are quite visible even if unplanned. 

lockins — implementation techniques that lock the system into safe states. 

lockouts — implementation techniques that lock the system out of hazardous states 

loose coupling — characterizes systems in which processes can be delayed or put in stand- 
by; sequences can be modified and the system restructured to do different jobs or the same 
job in different ways; they have "equifinality"—many ways to reach the goal. 

maintainability — the aptitude of a system to undergo repair and evolution. 
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methods — how concerns are addressed: analysis and synthesis processes during the de- 
velopment of the system, procedures and training for users and operators. 

mishaps — unplanned events that result in death, injury, illness, damage or loss of property, 
or environment harm. 

mode — state of a system characterized by the state of the demand being placed on the sys- 
tem and the configuration of resources used to satisfy the demand. 

observation interval — time interval over which a system is observed in order to compute 
measures such as throughput. 

performance — responsiveness of the system—either the time required to respond to specif- 
ic events or the number of events processed in a given interval of time. 

performance concerns — the parameters by which the attributes of a system are judged, 
specified, and measured. 

performance factors — the aspects of the system that contribute to performance. 

periodic — an arrival pattern that occurs repeatedly at regular intervals of time. 

permanent fault — a fault which, once it appears, is always there. 

physical faults — a fault that occurs because of adverse physical phenomena. 

precedence requirement — a specification for a partial or total ordering of event responses. 

processing rate — number of event response processed per unit time. 

quality — the degree to which software possesses a desired combination of attributes (e.g., 
reliability, interoperability) [IEEE 1061]. 

reliability — a measure of the rate of failure in the system that renders the system unusable. 
A measure of the ability of a system to keep operating over time. 

response — the computation work performed by the system as a consequence of an event. 

response window — a period of time during which the response to an event must execute; 
defined by a starting time and ending time. 

safety — a measure of the absence of unsafe software conditions. The absence of cata- 
strophic consequences to the environment. 

safety indicators — the aspects of the system that contribute to safety. 

schedulable utilization — the maximum utilization achievable by a system while still meeting 
timing requirements. 
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security factors — the aspects of the system that contribute to security. 

service — a system's behavior as it is perceived by its user(s). 

Software Fault Tree Analysis (SFTA) — an adaptation to software of a safety engineering 
analysis methodology. The goal of SFTA is to show that the logic contained in the software 
design will not cause mishaps, and to determine conditions that could lead to the software con- 
tributing to a mishap. 

spare capacity — a measure of the unused capacity. 

temporary fault — a fault which disappears over time. 

throughput — the number of events responses that have been completed over a given ob- 
servation interval. 

tight coupling — characterizes systems that have more time-dependent processes: they 
cannot wait or stand by until attended to; the sequences are more invariant and the overall 
design allows for very limited alternatives in the way to do the job; they have "unifinality"—one 
unique way to reach the goal. 

timing failure — a service delivered too early or too late. 

transient fault — a temporary fault arising from the physical environment. 

user of a system — another system physical or human which interacts with the former. 

utilization — the percentage of time a resource is busy. 

value failure — the improper computation of a value. 
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